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ABSTRACT
Finding and recognizing different objects in an image quickly and
reliably is an important field of computer vision. Object detection
is a challenging problem in this field. Humans have the ability to
perform such complex tasks fast and accurately. In contrast, the
problem of locating objects via a computer is not so simple. Deep
learning algorithms have emerged as powerful methods to detect ob-
jects in an image. In this paper, six state-of-the-art object detection
algorithms are presented, analysed and compared computationally
using four different datasets, two single class and two multiple
class datasets. The computational results show that the algorithms
achieve higher accuracy on the single class datasets than the multi
class datasets.
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1 INTRODUCTION
Amongst the most fundamental challenges in computer vision is
object detection. Object detection is a computer vision task that
detects instances of objects of specific classes (such as persons,
animals, cars, or buildings) in digital pictures like photos or video
frames. It is the foundation of many other computer vision tasks

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PCI 2021, 26 - 28 November 2021, Volos, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9555-7/21/11.
https://doi.org/10.1145/3503823.3503838

such as image captioning, object tracking, segmentation, and oth-
ers. Some examples of object detection applications include face
detection, number-plate identification, people counting, and text
detection. The purpose of object detection is to generate computa-
tional models that satisfy the most basic question that computer
vision applications possess: "What objects are there and where are
they?".

Object detection is often confused with image recognition. The
most important difference between them is that image recognition
only assigns a label to an image. More precisely, a photo of a car is
labeled "car". A photo of two cars is still labeled "car". On the other
hand, object detection draws a bounding box around each car and
assigned to the box a label with the "car" tag. The model tries to
identify all objects in an image that has been trained to detect and
which label should be applied to each object. Thus, object detection
provides more information about an image than recognition.

Today, the problem of recognizing and locating objects in images
is solved using Convolutional Neural Networks (CNNs). With the
introduction of CNNs and the adaption of computer vision technolo-
gies, object detection became much more common in the current
generation. The fact that CNNs, combined with graphic cards, make
it possible to solve object detection and tracking problems in less
time, enables them to be used in real-time applications. In this
regard, deep learning led to a significant improvement in object
detection. The problem of object detection has been studied a lot
with with the first publications appearing in the 90s [21] although
comparisons between different object detection algorithms are still
missing. This work aims to fill this gap. This paper aims to make
a thorough analysis of the most prevalent deep learning object
detection algorithms and compare them in real-world problems.

The paper is organized as follows. Section 2 includes a brief
introduction to CNNs and presents the object detection algorithms
that we study in this computational comparison. In Section 3, we
review the related work in this field. Section 4 presents the insights
that we have gathered from our computational study of the object
detection algorithms. Finally, conclusions are provided in Section 5.

2 OBJECT DETECTION ALGORITHMS
2.1 Convolutional neural networks
CNNs are algorithmic machine learning algorithms that take an in-
put image, assign meaning (weights and biases) to different objects
of the image, and distinguish between them. The preprocessing
required in a CNN is much less compared to other categorization
algorithms. While primitive methods create the filters by hand,
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CNNs can learn these filters/features with enough training. The
architecture of a CNN is analogous to the connectivity of neurons
in the human brain and thus, it was inspired by the organization
of the visual brain. In neural networks, CNNs are one of the main
categories for image recognition, image categorization, face recog-
nition, and of course object detection. CNNs process images using
weighting tables called filters (sometimes referred to as features)
that recognize certain features, such as vertical edges, horizontal
edges, etc. The ultimate goal of CNNs is to find out what is going
on in the scene.

For this study, we decided to study and compare six state-of-
the-art object detection algorithms: Faster R-CNN, SSD, RetinaNet,
EfficientDet, YOLOv3, and YOLOv4. Faster R-CNN belongs to the
family of region proposal algorithms and the remaining algorithms
are single-stage detectors. The main difference between region
proposal algorithms and single-stage detectors is that the region
proposal algorithms use a CNN to extract the features from a given
image and then propose regions where an object might be located,
and finally pass this region to the object classifier. A single-stage
detector, on the other hand, performs full object detection in the
same CNN. In the next subsections, we briefly introduce these
algorithms.

2.2 Faster R-CNN
Faster R-CNN [16] belongs to the family of R-CNNs. These algo-
rithms use selective search to find area suggestions. Selective search
is a time-consuming and sluggish operation that has an impact on
the algorithm’s performance. Therefore, Ren et al. [16] proposed
Faster R-CNN, which is an object detection algorithm that elimi-
nates the need for the selective search algorithm and allows the
network to learn area suggestions. The image is used as input to a
CNN, which provides a map of convolutional features. Instead of
using a selective search algorithm on the feature map to propose
suggestions, a separate network is used to predict region sugges-
tions. The predicted region proposals are then reconfigured using
a region of interest layer, which is then used to rank the image
within the proposed regions and predict bounding box values.

The Faster R-CNN algorithm requires multiple passes on each
image to export all objects. The overall mAP@.5 on the Com-
mon Objects in Context (COCO) dataset [12] was 42.7% and the
mAP@[.5,.95] was 21.9%, as shown in [16].

2.3 Single Shot Detector (SSD)
The SSD algorithm was proposed by Liu et al. [13] in 2016 and
became a state-of-the-art detector. The mAP@.5 on the COCO
dataset was 46.5% at 59 frames per second, and in Pascal VOC12, the
mAP@.5 was 74.9%. Unlike the Faster R-CNN, which uses a subnet
to suggest regions, the SSD detectors rely on a set of predefined
regions. A grid of anchor points is placed over the input image, and
at each anchor point, frames of different shapes and sizes serve as
regions. For each frame at each anchor point, the model predicts
whether or not an object is within the area, and changes the position
and size of the frame to fit closer to the object. Since there are many
frames at each anchor point and the anchor points may be close to
each other, SSD detectors generate many potential overlaps. Finally,

post-processing of the SSD output is performed to remove most of
these predictions and select the best one.

The architecture of SSD is based on VGG-16 architecture but
without the fully connected layers. Instead of the original fully con-
nected VGG layers, a number of cohesive auxiliary layers (starting
from conv6) have been added to allow export of features at multiple
scales and gradually reduce the input size at each subsequent layer.
The backbone of SSD is MobileNet v2 [17], which is based on a re-
verse residual structure where the input and output of the residual
block are thin bottleneck layers. On the other hand, typical residual
models use extended representations in the input. MobileNet v2
uses light convolutions in depth to filter features in the middle
expansion layer.

2.4 RetinaNet
RetinaNet [11] is one of the best single-level object detection mod-
els, proven to work well with dense and small objects. RetinaNet
has been configured to have two improvements over existing single-
stage object detectionmodels: Feature PyramidNetworks (FPN) [10]
and Focal Loss (FL) [11]. The main problem is the strong imbal-
ance between foreground and background classes that occurs when
training the dense detector. To address this, RetinaNet introduced
a new loss function called FL; this loss function transforms the
conventional cross-entropy loss to allow the detector to focus more
on hard misclassified cases during training. With FL, single-stage
detectors can achieve the same accuracy as two-stage detectors
while maintaining a fast detection speed. RetinaNet also uses the
FPN proposed as the backbone of the network, which in turn is
built on ResNet [8] and is fully contiguous. The fully convergent
nature allows the network to take an image of any size and ex-
port feature maps of similar size to multiple layers in the feature
pyramid. The FPN design includes two paths connected by side
connections. RetinaNet’s mAP@0.5 on the COCO dataset was 59.1%
and mAP@[.50,0.55,..,0.9] was 39.1%.

2.5 EfficientDet
EfficientDet [20] is a set of eight algorithms from Google that are
very efficient and accurate. It can perform well on a variety of
devices and is always comparable with a variety of resource con-
straints. In particular, in the case of one model and one scale, the
EfficientDet-D7 achieved 52.2% mAP in the overall COCO dataset
with 52M parameters and 325B FLOPs. Compared to existing al-
gorithms, the number of parameters was reduced by four to nine
times and the FLOPs by 13 to 42 times.

To develop this algorithm, Google first proposed a weighted
two-way feature pyramid network (BiFPN) that offers easy and
fast merging at multiple scales, and second, a scaling method for
complex pyramids that scales the depth and width, feature grid,
and box/class prediction grid of all backbone networks. EfficientDet
detectors are single-shot detectors such as SSD and RetinaNet. The
backbone of the EfficientDet network is the EfficientNet trained in
the ImageNet [7] dataset.
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2.6 YOLO V3
All previous object detection algorithms use regions for locating
the objects in an image. The network does not see the whole image,
but only some parts of the image that are more likely to contain
an object. YOLO is short for "You Only Look Once" [14]; it is an
object detection algorithm that is very different from region-based
algorithms. Since the entire recognition process runs on a single
CNN, the recognition performance can be optimized end-to-end.
A fast version of YOLO runs at 155fps with mAP@0.5 of 52.7% on
the VOC07 dataset, while its improved version runs at 45fps with
mAP@0.5 of 63.4% on the same dataset.

The YOLOv3 algorithm [15] first divides an image into an SxS
grid. Each grid cell predicts a certain number of bounding boxes
around objects that score high in the predefined classes. Each bound-
ing box has a corresponding confidence value indicating how accu-
rate the prediction should be, and only one object per boundary box
is detected. The boundary boxes are generated by clustering the
dimensions of the ground truth boxes from the original dataset to
find the most common shapes and sizes. YOLO is trained to perform
classification and bounding box regression simultaneously.

2.7 YOLO V4
YOLOv4 [6] is a significant improvement over YOLOv3. The imple-
mentation of the new architecture in Backbone and the changes in
Neck have achieved excellent results with real-time crawl speed. In
theMSCOCO dataset, YOLOv4 achieves an average accuracy of 43.5
% AP and a speed of 65 FPS on a Tesla V100 GPU. To achieve these
results, it combines features such as weighted connections, Cross-
Stage-Partial connections (CSP), Self-Adversial training (SAT), Mish
activations, data increments, DropBlock normalization, and CIoU
deviation.

The backbone architecture of YoloV4 consists of three parts: (a)
Bag of freebies, (b) Bag of specials, and (c) CSPDarknet53. Bag of
freebies methods are a set of methods that only increase the training
cost or change the training strategy while keeping the inference
cost low. Some of these methods are data augmentation, photomet-
ric bias, geometric bias, MixUp, and CutMix. Bag of specials is a
set of methods that slightly increase the cost of the detection, but
significantly improve the accuracy of the detector. These methods
include the introduction of attention mechanisms that expand the
receptive field of the model and improve the ability to integrate fea-
tures. CSPDarknet53 is the backbone network for feature extraction
of YOLOv4.

3 RELATEDWORK
Srivastava et al. [19] compared the Faster R-CNN, SSD, and YOLOv3
algorithms. Using the COCO dataset, they evaluate the accuracy,
precision, and F1 score of the algorithms. From the results of the
study, they conclude that the superiority of one of the algorithms
over the other two is highly dependent on the use cases in which
they are used. In an identical test environment, YOLOv3 performs
better than SSD and Faster R-CNN, making it the best of the three
algorithms.

John et al. [9] compared the algorithms R-CNN, Fast R-CNN,
Faster R-CNN, SSD, and YOLOv3 in the Pascal VOC and COCO
datasets. The performance and accuracy are the main criteria in

their comparative analysis. They conclude that with the develop-
ment of the model, the speed and accuracy were improved and
increased. Fast R-CNN is better than R-CNN, but Faster R-CNN is
much better than Fast R-CNN. Moreover, SSD is better than Faster
R-CNN, while YOLO v3 is better than SSD. They conclude that
YOLOv3 is extremely fast and accurate.

Since most related work studies compare object detection al-
gorithms using the two large datasets, Pascal VOC and Microsoft
COCO, we decided to study the performance and accuracy of the
algorithms by fine-tuning the object detection models in other
datasets, some of which are very small, with only one class, and
others larger, with 7 and 30 classes. Thus, in Section 4, we present
our computational analysis of six state-of-the-art algorithms on
four different datasets.

4 COMPUTATIONAL STUDY
In this Section, we train and evaluate the performance and the
accuracy of the algorithms: Faster R-CNN, RetinaNet, SSD, Effi-
cientDet, YOLOv3, and YOLOv4 in four different datasets. Two of
our datasets consist of a single class and the other two datasets
contain multiple classes. The computational comparison has been
performed on an Intel Core i7-7820X 3.60GHz processor with 32
GB of main memory and 16 cores, a clock of 3, 700 MHz, an L1
data cache of 11 MB per core and a memory bandwidth of 85 GB/s,
running under Ubuntu 20.10 64-bit, and on a GeForce GTX 1080
Ti GPU with 11 GB GDDR5 352-bit memory, a core clock of 1683
MHz, a memory clock of 11, 124 MHz and a memory bandwidth of
484 GB/s.

The first dataset is the Pistols Dataset from the University of
Grenada [4]. It contains 2, 986 images and 3, 448 tags in a single
object category: pistol. The images are wide-ranging: handguns,
cartoons, and studio-quality gun images. The second single class
dataset is the Raccoon dataset [2] created by Dat Tran. This dataset
contains 196 images of raccoons and 213 bounding boxes as some
images have two raccoons in an image. This is a single class problem
and images vary in dimensions. The third dataset is the Aquarium
Dataset [5] and contains seven different classes of objects. This
dataset consists of 638 images collected by Roboflow from two
aquariums in the United States. The final dataset is the PlantDoc
dataset [18]. The PlantDoc dataset consists of approximately 2, 600
images and 30 classes (diseased and healthy) of 13 different plant
species.

Figure 1 shows the visualization of the four datasets (images
along with the frames around the objects we are interested in) used
for training the algorithms of the study.

Moreover, the TensorFlow 2 Object Detection API and the Dark-
net framework were used to train and evaluate the object detection
models. The TensorFlow 2 Object Detection API [3] is the frame-
work that used to train and evaluate the algorithms Faster R-CNN,
SSD, RetinaNet and EfficientDet alogn with pre-trained models for
every algorithm in the COCO dataset. On the other hand, Dark-
net [1] is the official framework for the YOLO algorithms. For the
training process, we used the following hyperparameters. For the
Faster R-CNN the learning rate that we set was 0.04, the total
steps were 2, 000, the warm-up learning rate was 0.013333, and
warm-up steps were 2, 000. For the SSD algorithm, the learning
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(a) Pistols dataset (b) Raccoon dataset

(c) Aquarium dataset (d) Plant Doc dataset

Figure 1: Visualization of the four datasets

Algorithm Backbone Framework

Faster R-CNN Resnet50 TF 2 Object Detection API
SSD MobileNet v2 TF 2 Object Detection API

RetinaNet Resnet50 TF 2 Object Detection API
EfficientDet EfficientNet TF 2 Object Detection API
YOLOv3 Darknet-53 Darknet
YOLOv4 CSPDarknet53 Darknet

Table 1: The framework and the backbone network for each
object detection algorithm.

rate was 0.800000011920929, total steps were 2, 000, warm-up learn-
ing rate was 0.13333000242710114, and warm-up steps were 2, 000.
RetinaNet learning rate base was 0.039999910593033 total steps
were 2, 000, warm-up learning rate was 0.013333000242710114, and
warm-up steps were 2, 000. For EfficientDet learning rate base was
0.079999821186066 total steps were 300000, warm-up learning rate
was 0.0010000000474974513, and warm-up steps were 2, 500. For
YOLOv3 learning rate was 0.001, burn in was 1, 000, max batches
were 2, 000, and steps were 1600 and 1800.0. For YOLOv4 learning
rate was 0.001, burn-in was 1, 000, max batches were 2, 000, steps
were 1, 600 and 1800.

Table 1 shows the framework and backbone network that have
been used for training each object detection algorithm.

Furthermore, for the evaluation of the total accuracy of the ob-
ject detector models, we used some of the metrics of the COCO
challenge. More precisely, the metrics that we utilized are the fol-
lowing: (i) AP: which is mAP averaged over ten Intersection over

Dataset Pistols Dataset Raccoon Dataset
Algorithm AP AP50 AP75 AP AP50 AP75
Faster R-CNN 0.638 0.884 0.682 0.739 0.999 0.957

SSD 0.547 0.789 0.597 0.608 0.954 0.685
EfficientDet 0.572 0.855 0.617 0.669 0.972 0.751
RetinaNet 0.535 0.762 0.564 0.577 0.949 0.590
YOLOv3 0.593 0.893 0.655 0.564 0.985 0.614
YOLOv4 0.604 0.940 0.709 0.584 0.957 0.706

Table 2: Accuracy of the algorithms according to the COCO
challenge metrics on the single class datasets.

Dataset Aquarium Dataset PlantDoc Dataset
Algorithm AP AP50 AP75 AP AP50 AP75
Faster R-CNN 0.350 0.662 0.330 0.441 0.607 0.535

SSD 0.349 0.653 0.311 0.238 0.329 0.284
EfficientDet 0.354 0.657 0.333 0.235 0.352 0.287
RetinaNet 0.378 0.647 0.374 0.278 0.382 0.328
YOLOv3 0.444 0.756 0.586 0.421 0.570 0.471
YOLOv4 0.339 0.686 0.300 0,151 0.258 0.153

Table 3: Accuracy of the algorithms according to the COCO
challenge metrics on the multi class datasets.

Union (IoU) thresholds (i.e., 0.50, 0.55, 0.60, . . . , 0.95) and is the main
metric of the COCO challenge, (ii) AP IoU=.50: AP at IoU=0.50, and
(iii) AP IoU=.75: AP at IoU=0.75.

We trained each algorithm in the study on each dataset and
evaluated the mAP of each trained model. Tables 2 and 3 show the
evaluated results of the trained models of the algorithms Faster R-
CNN, SSD, EfficientDet, RetinaNet, YOLOv3, and YOLOv4 according
to the measurements used to characterize the performance of an
object detector in the COCO challenge. Table 2 shows the evaluation
results of the trained models on single class datasets, while Table 3
shows the evaluation results of the trained models on multiclass
datasets.

An important parameter in object detection is the inference
time of the trained models for both CPUs and GPUs. Therefore,
we decided to measure the inference times of the trained models.
In Table 4, we present the average inference time for each object
detection algorithm to detect objects in an image. In this study,
inference was performed exclusively using either the CPU, in our
case an i7-7820X CPU@ 3.60GHz, or by acceleration using the GPU,
in our case the Nvidia GeForce GTX 1080 Ti. It can be clearly seen
that all object detection algorithms in this study have significantly
higher performance when run on a GPU and not only on a CPU.
The only exception was the SSD algorithm using MobileNetV2, a
very efficient mobile backbone optimized for performance.

It is very difficult to make a fair comparative analysis between
different object detectors. There is no simple answer to the question
of which model is the top. For each different application, we have to
make our choice to find the best compromise between accuracy and
speed. In addition to detector types and algorithms, other options
also affect performance, such as feature exporters (VGG16, ResNet,
Inception, MobileNet), input image resolution, training dataset, loss
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Algorithm GTX 1080 Ti GPU i7-7820X CPU

Faster R-CNN 0.29 sec. 0.73 sec.
SSD 0.05 sec. 0.08 sec.

EfficientDet 0.07 sec. 0.16 sec.
RetinaNet 0.15 sec. 0.33 sec.
YOLOv3 0.11 sec. 6.11 sec.
YOLOv4 0.16 sec. 6.93 sec.

Table 4: Object detection times in an image onCPUandGPU.

function, deep learning software, and more. From the results, we
can see that the algorithms have higher accuracy on single-class
datasets than on multi-class datasets.

5 CONCLUSIONS
In this paper, we studied the object detection problem usingmachine
learning algorithms. We trained six state-of-the-art object detection
algorithms on four different datasets and compared their accuracy
and performance. As for the algorithms, R-CNNs are accurate but
quite slow, even when running on GPUs. In our experiments, we
came to the same conclusion. The Faster R-CNN algorithm had av-
erage accuracy, but its GPU execution time was about 0.29 seconds.
For single-stage detectors, the YOLOv4 and EfficientDet algorithms
also had high accuracy, but their average detection time was lower.
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