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Abstract—There is an abundance of deep neural network
models for plant disease detection. Prior to applying these models,
image preprocessing techniques are applied in order to improve
the detection results. However, there is a lack of computational
comparisons on the application of different image preprocessing
techniques before applying object detection algorithms for plant
disease detection. This paper aims to fill this gap by presenting
a computational comparison of seven different image prepro-
cessing techniques (auto-orientation, object isolation, resizing,
grayscale conversion, static crop, contrast adjustment, tiling)
applied prior to the execution of two state-of-the-art object
detection algorithms, one single-stage detector, YOLOV5, and
one two-stage detector, Faster-RCNN. We investigate whether or
not these preprocessing techniques improve the accuracy, training
time, and inference time, of plant disease detection. Apart from
comparing these techniques solely, we also perform combinations
of the preprocessing techniques. The PlantDoc dataset was used
for this experimental study. Computational results show that
the best method improves the mean average precision by 9%
and 3% for YOLOv5 and Faster-RCNN, respectively. Finally,
the combination of all seven preprocessing techniques yields an
improvement of about 13% in the mean average precision of
both object detectors.

Index Terms—Object recognition, neural nets, model classifi-
cation.

I. INTRODUCTION

CRop diseases contribute to production loss. The Food and
Agriculture Organization of the United Nations estimates

that 20–40% of the annual global crop production is lost to
diseases and pests [1]. Therefore, plant diseases and pests
detection is a field that has attracted much attention in the
recent literature. Advances in image processing and neural
network models have been applied for the detection of diseases
and pests in crops.

In the vast literature of precision agriculture, there are a lot
of deep learning models for identifying diseases and pests [2]
[3] [4] [5]. However, there is a lack of works dealing with the

application of novel image preprocessing techniques prior to
the execution of object detectors. Most papers that propose a
new deep learning model for plant diseases and pests detection
either do not apply any preprocessing method or apply simple
preprocessing techniques without any justification of their
effect in the detection accuracy. Therefore, it is of great sig-
nificance to assess the performance of different preprocessing
techniques before applying deep learning methods for the
detection of diseases and pests in crops.

Image quality is one of the most important factors that affect
object detection and image classification accuracy. A high-
quality image has a higher rate of classification or recognition
than any unprocessed noisy image. In precision agriculture, we
acquire images from high altitudes using Unmanned Aerial
Vehicles (UAVs) or from difficult terrains using Unmanned
Ground Vehicles (UGVs). Because of the air turbulence and
the speed of the UAV, many captured images are blurry and
shaky [6]. The same applies for UGVs when they are used
to capture images on difficult terrains. Thus, it is harder to
extract features from such images, which reduces the object
recognition and localization accuracy.

There is a large gap in the literature regarding the com-
putational comparison of image preprocessing techniques for
plant diseases and pests recognition. The aim of this paper is
to study the effect that image preprocessing techniques have
on the recognition of crop diseases. In the experimental study
of this paper, we run experiments detecting crop diseases using
two state-of-the-art object detection models either by using im-
age preprocessing techniques or without preprocessing. Seven
image preprocessing techniques are utilized in this paper,
namely auto-orientation, object isolation, resizing, grayscale
conversion, static crop, contrast adjustment, and tiling. In order
to study the effect of preprocessing on different types of
object detection models, we have selected one single-stage
detector, YOLOV5 [7], and one two-stage detector, Faster-
RCNN [8]. Different metrics are used to assess the efficiency979-8-3503-9858-8/22/$31.00 © 2022 IEEE
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of the preprocessing techniques like the accuracy, the training
time, and the inference time of the object detection models.

The rest of this paper is structured as follows. Section II
includes related work. In Section III, we present the image
preprocessing techniques that were utilized in the experimental
study. The computational comparison of the preprocessing
techniques is presented in Section IV. Finally, conclusions are
provided in Section V.

II. RELATED WORK

Various works have studied image preprocessing techniques
in different image types. Image preprocessing techniques have
been applied in applications for face recognition, medical
imagery, object detection, and agriculture. Dharavath et al. [9]
used image preprocessing techniques to improve the face
recognition rate. They used techniques such as face detection
and cropping, image denoising, image resizing, image nor-
malization, and filtering. In addition, they used three different
feature extraction techniques, to illustrate the effect of prepro-
cessing techniques. The impact on the recognition rate for the
three methods was 66.32%, 62.12%, and 48% respectively.

Vasuki et. al. [10] used image preprocessing techniques
for various areas of medical imaging. They used denois-
ing and image enhancement techniques (i.e., frequency and
spatial domain enhancement methods) to make images more
clear for human perception or machine analysis. Schmidt et.
al. [11] proposed an image preprocessing technique for object
recognition of aerial images. They compared three different
methods, no segmentation, segmentation to equal size, and the
proposed AVIS method. They concluded that the AVIS method
surpassed by 8.72% the average precision of the previous
better method with a confidence score threshold of 20 and
surpassed by 10.5% the average precision of the previous
better method with a confidence score threshold of 50.

There is a large gap in the literature regarding the computa-
tional comparison of image preprocessing techniques for plant
diseases and pests recognition. Most papers use image pre-
processing techniques to improve the accuracy of predictions
in plant disease detection without an in-depth analysis of the
effect of different preprocessing techniques. Belay et. al. [12]
developed a disease detection model using deep learning to
classify diseases on a chickpea. They used a combination
of the gaussian and median filters to conduct noise filtering,
picture scaling, normalization, and other image preprocessing
processes. They achieved an accuracy of 92.55%. Huang et
al. [13] presented a method to make decisions about dumping
chemicals in Helminthosporium Leaf Blotch (HLB) disease
through a system that provides decision support information
for spraying machines. For HLB identification, they used
remote sensing from an UAV. They divided the data into four
classes of disease, normal, light, medium, and heavy, and they
used a Convolutional Neural Network (CNN) to identify them.
They used batch normalization as a preprocessing technique.
The model achieved an accuracy rate of 91.43%.

Vasavi et. al. [14] presented an overview of the existing
studies in the area of forecasting crop leaf disease using image

processing, machine learning, and deep learning algorithms.
They studies a number of papers and concluded that the
most frequently used image preprocessing techniques are: (i)
cropping the leaves from the acquired images, (ii) color trans-
formations, (ii) rescaling, (iv) background removal, (v) image
enhancement, (vi) flipping, (vii) rotating, (viii) shearing, and
(ix) image smoothing. Aslan et. al. [15] presented a compre-
hensive survey on leaf disease identification and classification,
and the noted that image preprocessing techniques consist of
four different tasks: (i) image resizing, (ii) noise removal, (iii)
image enhancement, and (iv) image segmentation.

In this paper, we aim to compare seven different preprocess-
ing techniques prior to the application of an object detector
for plant diseases and pests prediction. Different metrics, such
the accuracy, the training time, and the inference time of the
object detection models will be studied with and without the
application of the preprocessing techniques.

III. IMAGE PREPROCESSING TECHNIQUES

In this study, we use the following seven image preprocess-
ing techniques to improve the mean average precision of CNN
models for plant diseases and pests detection:

i Auto-orientation: a technique that strips an image from its
Exchangeable Image File Format (EXIF) data by deter-
mining the orientation of a given image in order to display
it the same way that they are stored on disk. EXIF files
hold crucial information about images. These data files
are produced by almost all digital cameras each time a
picture is captured. The whole image’s metadata, including
the exposure level, picture’s location, orientation, and any
camera settings, are included in an EXIF file.

ii Object isolation: generates an image (with one full-frame
annotation) for each bounding box in the original dataset.

iii Resizing: changes the image’s size and, optionally, scales
to a desired set of dimensions. Annotations are adjusted
proportionally.

iv Grayscale conversion: reduces the number of the image
size by changing an RGB-channeled image into one with
only a single grayscale channel. The weighted total of the
associated red, green, and blue pixels is used to calculate
the value of each grayscale pixel: G = 0.2125 RED +
0.7154 GREEN + 0.0721 BLUE.

v Static crop: an image is reduced to a certain horizontal or
vertical portion.

vi Contrast adjustment: enhances an image with low con-
trast. For local contrast improvement, it uses the adaptive
equalization technique, which makes use of histograms
calculated across several tiling sections of the picture.
Therefore, even in areas that are darker or brighter than
the majority of the areas in an image, local details can be
improved.

vii Tiling: a technique for detecting small images by tiling
the images. Tiling effectively focuses the detector on small
objects while preserving the low input resolution required
for quick inference.
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(a) Original Image (b) All preprocessing
techniques

(c) Auto-orientation (d) Object isolation

(e) Resizing (f) Grayscale conversion

(g) Static Crop (h) Contrast adjustment

(i) Tiling

Fig. 1: Visualization of the original image and and the prepro-
cessed images

In Figure 1, we present an example of an original image
from the PlantDoc dataset [16] and the corresponding images
after the application of each preprocessing technique sepa-
rately and combined.

IV. COMPUTATIONAL STUDY

In this section, we present the experimental study with
the object detection algorithms either by using the image
preprocessing techniques or without them. The PlantDoc [16]
dataset is used, which contains a total of 2,345 images with

13 different plant species and 18 classes of diseases. For
the training and detection of the plant diseases, we used
two state-of-the-art object detection algorithms: one single-
stage detector, namely YOLOV5 [7] and a two-stage detec-
tor, namely Faster-RCNN [8]. The ”You Only Look Once”
(YOLO) object detection technique divides images into a grid
layout. In the grid, each cell is in charge to find objects inside
of it. Due to its accuracy and speed, YOLO is one of most
widely-used algorithms for object detection. Faster R-CNN is
a single-stage model that is trained end-to-end and is used for
object detection. Faster R-CNN is able to accurately predict
the positions of various items efficiently and correctly. Both
algorithms’ models are pre-trained on the COCO dataset [17].

The experiments were carried out on a Dell PowerEdge
R710 server with an Intel Intel Xeon Silver 4214 CPU
processor with 48 CPU cores and 128 GB of RAM running
under Ubuntu 20.10 64-bit, and on an NVIDIA V100 Tensor
Core GPU with 32 GB of memory. A custom deep learning
workflow orchestrator was implemented with PyTorch [18],
which supports custom models and pretrained models from
OpenMMLab [19] and TorchVision [20]. For the experiments
we trained and evaluated each preprocessing technique once
and all preprocessing techniques in the dataset.

We combine the image resize technique to all other pre-
processing techniques to decrease the runtime of the object
detectors. In addition, we used several of the COCO challenge
metrics to assess the overall accuracy of the trained models.
The metrics are the following:

• AP: the median average precision (mAP) averaged over
ten intersection over union (IoU) thresholds (i.e., 50%,
55%, 60%, . . . , 95%). This is the main metric of our
experimental process

• AP IoU=.50: AP at IoU=50%
• AP IoU=.75: AP at IoU=75%
• ARmaxdets=1: the maximum recall given one detection per

image
• ARmaxdets=10: the maximum recall given ten detection per

image
• APmaxdets=100: the maximum recall given 100 detection

per image

The AP results of YOLOv5 are presented in Table I, while
the AR results are presented in Table II. The best performance
for each metric is in bold. Combining all techniques increased
the AP by 13.1%. In addition, the techniques auto-orientation,
object isolation, and static crop provided better results in terms
of accuracy in contrast to the original unprocessed images.
The grayscale conversion had the worst performance of 19%
since color provides a meaningful signal to the model and
colors are fairly similar in their appearance [21]. Regarding
the AP IoU=.50 metric, the best accuracy was obtained by
the object isolation with an accuracy of 38.7%. Similarly,
for the AP IoU=.75 metric, which is a strict metric, the best
accuracy was obtained for the auto-orientation technique with
an accuracy of 32.1%. The combinations of all techniques also
succeed in the best AR for max detections 1, 10, and 100. The
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recall remains stable at 41% for all three cases. Since we found
that the grayscale conversion and tiling had negative results,
we reran the experiment using only the other five methods.
The results were not as expected, as the combination of all
other techniques seems to decrease the AP metrics, except
for the AP IoU=.50 metric.

The AP results of Faster-RCNN are shown in Table III,
while the AR results are shown in Table IV. Similarly to
YOLOv5, there was also an increase of 13.4% in the accuracy
by combining all preprocessing techniques even though none
of the techniques individually caused a significant increase
of the accuracy. Regarding the AP IoU=.50 metric, the best
accuracy was obtained by the original unprocessed images
with an accuracy of 42.8%. Similarly, for the AP IoU=.75 metric,
the best accuracy was achieved by the contrast adjustment
technique with an accuracy of 28.6%. The best technique for
the AR metric for max detections 1, 10, and 100 is to combine
all the preprocessing techniques together. The recall is 29.4%,
48.1%, and 50.2% for the three cases, respectively.

Finaly, Table V includes the average execution times per
epoch in seconds for the YOLOv5 and Faster-RCNN train-
ing. The training times have decreased, meaning that the
preprocessing techniques had a positive effect on the model
training time. We observe that the YOLOv5 algorithm de-
creases its average time per epoch by about 81%–86% for
the preprocessing techniques auto-orientation, object isolation,
and static crop. However, the average precision is increased.
The grayscale conversion technique, although it significantly
reduces the execution time of each epoch, does not achieve
an improvement in the results. This is due to the loss of a
large part of the information from the image. This results in
the training of the neural network being more difficult, and
consequently not being able to find better results. Tiling is
the most time-consuming preprocessing technique. The tiling
technique takes as input one image and produces four images,
thus, increasing the dataset three times.

In Figures 2–3, we present the performance of the YOLOv5
and Faster-RCNN algorithms, respectively. The x-axis is the
mAP, while the y-axis is the average execution time per epoch.
Techniques appearing on the lower right part are the best since
they combine a large mAP value with a low average execution
time per epoch. In both cases, the grayscale technique is the
fastest technique but it also produces lowest mAP. For the
YOLOv5 algorithm, the average time per epoch of the original
dataset and the average time per epoch of all the preprocessing
techniques together are relatively close, but the latter produces
a larger mAP value. Static crop method produces a very
good accuracy by also reducing the execution time per epoch
compared to the original images. Regarding the Faster-RCNN
algorithm, the combination of all preprocessing techniques
dramatically reduces the execution time per epoch and on the
same time increases the mAP value.

V. CONCLUSION

Image preprocessing techniques are utilized prior to the ap-
plication of object detection models without any justification.

Techniques AP AP50 AP75
Original images 0.266 0.376 0.301
All techniques 0.301 0.302 0.302

Auto-orientation 0.271 0.381 0.321
Object isolation 0.279 0.387 0.311

Grayscale conversion 0.190 0.314 0.194
Static crop 0.292 0.406 0.270

Contrast adjustment 0.245 0.245 0.245
Tiling 0.201 0.338 0.202

Combination of 5 techniques 0.251 0.399 0.292

TABLE I: Average precision of YOLOv5 on the PlantDoc
dataset

Techniques maxDets=1 maxDets=10 maxDets=100
Original images 0.194 0.370 0.396
All techniques 0.410 0.410 0.410

Auto-orientation 0.201 0.381 0.405
Object isolation 0.198 0.374 0.402

Grayscale conversion 0.190 0.370 0.385
Static crop 0.272 0.379 0.387

Contrast adjustment 0.316 0.316 0.316
Tiling 0.200 0.339 0.379

Combination of 5 techniques 0.216 0.380 0.406

TABLE II: Average recall of YOLOv5 on the PlantDoc dataset

Techniques AP AP50 AP75
Original images 0.260 0.428 0.028
All techniques 0.295 0.441 0.040

Auto-orientation 0.225 0.359 0.237
Object isolation 0.269 0.435 0.039

Grayscale conversion 0.210 0.341 0.221
Static crop 0.263 0.395 0.268

Contrast adjustment 0.260 0.415 0.286
Tiling 0.235 0.422 0.219

Combination of 5 techniques 0.236 0.382 0.271

TABLE III: Average precision of Faster R-CNN on the Plant-
Doc dataset

Techniques maxDets=1 maxDets=10 maxDets=100
Original images 0.200 0.426 0.459
All techniques 0.294 0.481 0.502

Auto-orientation 0.197 0.394 0.407
Object isolation 0.215 0.418 0.467

Grayscale conversion 0.212 0.389 0.406
Static Crop 0.291 0.442 0.445

Contrast adjustment 0.221 0.412 0.425
Tiling 0.283 0.432 0.440

Combination of 5 techniques 0.212 0.379 0.399

TABLE IV: Average recall of Faster R-CNN on the PlantDoc
dataset

Techniques YOLOv5 Faster-RCNN
Original images 115 344
All techniques 80 75

Auto-orientation 18 75
Object isolation 16 75

Grayscale conversion 15 70
Static crop 21 68

Contrast adjustment 16 72
Tiling 108 255

TABLE V: Average training time per epoch (in seconds) with
and without preprocessing
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Fig. 2: YOLOv5 performance with and without preprocessing

Fig. 3: Faster-RCNN performance with and without prepro-
cessing

The main goal of this work was to provide computational
evidence of several preprocessing techniques, which can help
object detection models achieve better accuracy rates. In this
study, we applied seven different image preprocessing tech-
niques to the PlantDoc dataset and trained two state-of-the-art
object detection algorithms (YOLOv5 and Faster-RCNN) in
order to assess the effect of the preprocessing techniques on
the detection accuracy and training time. We conclude that the
detection accuracy increases when preprocessing techniques
are applied prior to the object detection algorithms. The
accuracy was increased by about 13% for both algorithms
when all preprocessing techniques used at once. Furthermore,
there was also a slight decrease in the average execution
time per epoch in the training process when all preprocessing
techniques were used.

Image preprocessing is not a panacea for achieving higher
accuracy or less training time but helps. In future work, we
plan to experiment with other image preprocessing techniques,
such as image denoising, image filtering, and image normaliza-
tion, and other object detection algorithms, such as YOLOv7
[22], EfficientDet [23], SSD [24] and RetinaNet [25].
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